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ABSTRACT
Joint analysis of multiple phenotypes can increase statistical power in genetic association studies. Principal
component analysis, as a popular dimension reduction method, especially when the number of phenotypes
is high dimensional, has been proposed to analyze multiple correlated phenotypes. It has been empirically
observed that the first PC, which summarizes the largest amount of variance, can be less powerful than
higher-order PCs and other commonly used methods in detecting genetic association signals. In this article,
we investigate the properties of PCA-based multiple phenotype analysis from a geometric perspective
by introducing a novel concept called principal angle. A particular PC is powerful if its principal angle is
0◦ and is powerless if its principal angle is 90◦. Without prior knowledge about the true principal angle,
each PC can be powerless. We propose linear, nonlinear, and data-adaptive omnibus tests by combining
PCs. We demonstrate that the Wald test is a special quadratic PC-based test. We show that the omnibus
PC test is robust and powerful in a wide range of scenarios. We study the properties of the proposed
methods using power analysis and eigen-analysis. The subtle differences and close connections between
these combined PC methods are illustrated graphically in terms of their rejection boundaries. Our proposed
tests have convex acceptance regions and hence are admissible. The p-values for the proposed tests can be
efficiently calculated analytically and the proposed tests have been implemented in a publicly available
R package MPAT. We conduct simulation studies in both low- and high-dimensional settings with various
signal vectors and correlation structures. We apply the proposed tests to the joint analysis of metabolic
syndrome-related phenotypes with datasets collected from four international consortia to demonstrate the
effectiveness of the proposed combined PC testing procedures. Supplementary materials for this article,
including a standardized description of the materials available for reproducing the work, are available as an
online supplement.
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1. Introduction

In the past decade, Genome-Wide Association Studies (GWASs)
have identified thousands of genetic variants associated with
hundreds of human complex traits and diseases (Welter
et al. 2014), as reported in the National Human Genome
Research Institute and European Bioinformatics Institute’s
(NHGRI-EBI) catalog. By using the open-access NHGRI-EBI
catalog, Sivakumaran et al. (2011) found abundant evidence of
pleiotropy: 233 (16.9%) genes and 77 (4.6%) single nucleotide
polymorphisms (SNPs) show pleiotropic effects, and the
numbers are still growing over time. As detailed phenotype data
from epidemiological studies, electronic health records (EHR),
genome-wide omics profiling, and real-time mobile health
devices are becoming rapidly available, there is an increasing
interest in identifying cross-phenotype associations (Solovieff
et al. 2013; Bush, Oetjens, and Crawford 2016), which hold great
potentials for novel drug target discovery, drug repurposing,
and informing precision medicine (Collins and Varmus 2015).

Our work is motivated by studying the genetic basis of
metabolic syndrome (MetS) (Brown and Walker 2016). A set of
clinical phenotypes are involved in the disease process of MetS.

CONTACT Zhonghua Liu zhhliu@hku.hk Department of Statistics and Actuarial Science, University of Hong Kong, Pokfulam Road, Hong Kong, China.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.
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Single-trait GWAS studies have been conducted to identify
susceptible SNPs associated with each of those MetS-related
phenotypes. The following four consortia studied the genetic
architecture of the MetS traits. The International Consortium
for Blood Pressure (ICBP) is an international effort to investigate
blood-pressure genetics. It conducted a GWAS of systolic blood
pressures (SBP) of 200,000 individuals of European descent
(ICBP et al. 2011). The Global Lipids Genetics Consortium
(GLGC) performed individual trait GWAS analysis of high-
density lipoprotein cholesterol (HDL), low-density lipoprotein
cholesterol (LDL), and triglycerides (TG; Teslovich et al. 2010).
It examined the SNP–lipid associations in 188,578 European-
ancestry individuals (Willer et al. 2013). The Meta-Analyses
of Glucose and Insulin-related traits Consortium (MAGIC)
represents a collaborative effort to combine data from multiple
GWASs to identify genetic loci that impact glycemic and
metabolic traits. The MAGIC study performed meta-analysis
of 29 GWASs of Fasting Glucose (FG) from 58,074 nondiabetic
participants, and 26 GWASs of Fasting Insulin (FI) from 51,750
nondiabetic participants (Manning et al. 2012), with both
analyses adjusting for Body Mass Index (BMI). The Genetic
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Investigation of ANthropometric Traits (GIANT) consortium
investigates the genetic underpinning that modulates human
body size and shape. It performed a GWAS analysis of Body
Mass Index (BMI) using 339,224 individuals (Locke et al. 2015),
and a BMI-adjusted GWAS analysis waist-hip-ratio (WHR)
using 224,459 individuals of European ancestry (Shungin et al.
2015). Although those aforementioned studies identified the
SNPs associated with each of the eight phenotypes, the single-
trait analysis paradigm is likely to suffer from potential power
loss for detecting the genetic variants associated with MetS by
ignoring the fact that these clinical phenotypes of MetS are
related and might share a common genetic basis.

It has been shown that joint analysis of multiple phenotypes
together can increase statistical power to detect genetic variants.
Numerous methods have been proposed for multiple phenotype
analysis, see Solovieff et al. (2013) for a review. Examples include
multivariate regression-based methods, which improve power
under specific parametric assumptions, such as homogeneous
effects across phenotypes, but are subject to power loss when
these assumptions are violated (Schifano et al. 2013; Zhou and
Stephens 2014); the p-value correction method TATES (van
der Sluis et al. 2013), which accounts for between-phenotype
correlation, has a good power in the presence of a very few
association signals and can lose power otherwise. Furthermore,
this method is subject to inflated Type I error rate by 12%
(He, Avery, and Lin 2013). Zhu et al. (2015) proposed two
tests, one for detecting homogeneous effects and another for
detecting heterogenous effects based on a truncated test statis-
tic. These tests were found to have good performance when
their corresponding assumptions hold. In practice, researchers
usually have little prior knowledge about which assumption
holds, and hence it might be challenging to decide which test
to use. Moreover, the p-value of the truncated test for detecting
heterogenous effects could not be calculated analytically and
requires Monte Carlo simulations, which are computationally
expensive for genome-wide analysis of multiple phenotypes.
Huang and Lin (2013) and Liu and Lin (2018) proposed variance
component tests for multiple phenotypes. We will show that this
variance component test is a special quadratic combination of
PC test in this article.

Principal component analysis (PCA), as a popular dimension
reduction technique, especially when the number of phenotypes
is not small, is an appealing approach that transforms correlated
phenotypes into orthogonal composite scores (Aschard et al.
2014). Although it has been empirically found that principal
components (PCs) that explain a small amount of the total
variance of the multiple phenotypes can be as powerful or even
more powerful than the PCs that explain a large amount of the
total variance of the multiple phenotypes (Aschard et al. 2014),
however there is no theoretical explanation for this counter-
intuitive phenomenon. It is also unclear which PCs should be
used to achieve the best power for genetic association testing.

It is well known that the uniformly most powerful (UMP)
test does not exist for composite hypothesis testing. The classical
Wald test can lose substantial power when the first PC captures
all the signals and also explains a large amount of the total vari-
ance. The canonical correlation analysis aims to find a best linear
combination of the multiple phenotypes (Ferreira and Pur-
cell 2009), and thus can perform poorly when the relationship

between a genetic variant and multiple phenotypes is not linear.
Therefore, there is a pressing need to develop effective powerful
testing methods for multiple phenotype association studies.

Since multiple PCs are likely to contain association evidence,
it could be advantageous to combine PCs together to achieve
better power. There are several challenges on how to effectively
combine association evidence across multiple PCs. First, the
underlying genetic effects are unknown and can be heteroge-
nous, that is, a genetic variant can have positive, negative, or
null effects on different phenotypes. Second, the correlation
structure among multiple phenotypes can be arbitrary, that
is, phenotypes can be positively or negatively correlated with
varying correlation strength. However, little is known in the
literature about the effect of the correlation structure on the
power of the PC-based tests. Furthermore, it is more challenging
to effectively combine PCs in high-dimensional settings, such
as in gene expression studies, because it is more complex to
understand the interplay between the high-dimensional sig-
nal vectors and the between-phenotype correlation structures.
Therefore, it is of significant interest to develop more powerful
testing procedures by effectively combining PCs and taking into
account the between-phenotype correlation structure, the effect
size, and the direction of the genetic effects, in both low- and
high-dimensional settings.

In this article, we aim to address these problems by devel-
oping robust and powerful PC-based methods for testing for
genetic association with multiple phenotypes, as well as studying
the effects of the between-phenotype correlation structures on
the power of the proposed PC-based tests. This article makes the
following contributions. First, we introduce a novel geometric
concept called principal angle and show that a particular PC can
be powerless if its principal angle is 90◦ and can be as powerful as
the Oracle test if its principal angle is zero. In practical settings,
any PC can be powerless if one has no prior knowledge about
the true principal angles.

Second, we propose several data-driven methods to combine
PCs to boost the power for testing for the association between a
genetic variant and multiple phenotypes. We first propose the
minimum PC p-value (PCMinP) and the Fisher’s method by
combining PC p-values (PCFisher) as testing statistics. We then
propose linear and quadratic combinations of PCs weighted
by the functions of eigenvalues. Specifically, we show that an
inverse-eigenvalue weighted linear combination of PCs (PCLC)
can be as powerful as the Oracle test when all the principal
angles are equal to each other, but can lose power otherwise.
Quadratic combinations of PCs are shown to be more robust
than PCLC. We show that the classical Wald test and the recently
proposed variance component score test (Huang and Lin 2013;
Liu and Lin 2018) are special cases of the quadratic combina-
tions of PCs. These two tests both favor the alternatives under
which the last principal angle is zero. As we usually have no
prior knowledge about the true signal direction in practice, we
propose an omnibus test (PCO) which uses the data-driven
method to best combine several linear and nonlinear PC tests
together to achieve robust power performance under various
alternatives.

Third, we perform eigen-analysis to investigate the effects
of the between-phenotype correlation structure on the power
performance of the PC-based tests. The subtle differences and
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close connections between our proposed tests are compared
graphically in terms of their rejection boundaries. Our pro-
posed tests all have convex acceptance regions and hence are
admissible (Birnbaum 1954, 1955). Fourth, the p-values of our
proposed tests can be calculated analytically in a computation-
ally efficient manner.

The Type I error rates of our proposed tests are shown to
be well controlled by simulation studies. The powers of the
proposed tests relative to several commonly used methods,
such as the Wald test, the TATES method (van der Sluis et al.
2013), are compared using simulations in both low- and high-
dimensional settings. The robust power performance of the
proposed omnibus test PCO is demonstrated through simula-
tions using a range of signal patterns and correlation structures.
Finally, we applied our proposed tests to the aforementioned
metabolic syndrome trait GWAS datasets and identified addi-
tional new genetic variants that were missed by the original uni-
variate analyses. Those identified new SNPs might play impor-
tant biological roles in the pathogenesis of MetS and can serve
as potential candidates for future functional studies.

The remainder of this article is organized as follows. In
Section 2, we describe our PC-based testing procedures and
perform power analysis. In Section 3, the omnibus PC-based
tests are proposed to improve robustness and power of the PC-
based tests. In Section 4, we compare those tests in terms of their
rejection boundaries and demonstrate their differences graph-
ically. In Section 5, we perform eigen-analysis to investigate
how the between-phenotype correlation structure affects the
statistical powers of our proposed tests. In Section 6, we conduct
simulation studies to evaluate the performance of our methods
in both low- and high-dimensional settings. In Section 7, we
apply our tests to the metabolic syndrome trait GWAS datasets.
Finally, we conclude with discussions in Section 8.

2. The Principal Component Association Tests

Suppose that there are K correlated phenotypes denoted by Y =
(Y1, . . . , YK)T . Traditional GWAS studies consist of hundreds
of thousands of SNPs across the genome. One analyzes an SNP
at a time for each phenotype separately. For a particular SNP,
we have K correlated test statistics for testing for the presence
of genetic effects, that is, Z-scores Z = (Z1, . . . , ZK)T that
asymptotically follow a multivariate normal distribution with
the covariance matrix �, which is equal to the correlation matrix
of Y conditional on other covariates included in the univariate
analysis under the null (Liu and Lin 2018). In other words,
the Z scores have already taken into account the effects of
confounders, such as population stratification, and � is not the
crude covariance of Y but the residual covariance after regress-
ing Y on covariates. Although across the whole genome, differ-
ent genetic variants could have different minor allele frequencies
(MAF), however their association test statistics Z follow the
same null distribution. This serves as the basis for consistently
estimating � using the sample covariance matrix of the Z-
statistics across the genome under the null hypothesis (Zhu et al.
2015; Liu and Lin 2018).

For simplicity, we assume � is known for the ease of discus-
sions hereafter. For a given dataset of sample size n, univariate
analysis for each phenotype can be performed. For a particular

genetic variant, we can obtain a K-dimensional vector of sum-
mary testing statistics Z ∼ N(β , �), where β ∝ √

n and n is
the sample size for calculating Z. We are interested in testing
H0: β = 0 against Ha: β �= 0, where β is referred to as the
signal vector. We would like to develop robust and powerful tests
that are robust to the between-phenotype correlation structures
and signal vector patterns, especially when the dimension of
phenotypes is not small.

2.1. The Oracle Test for the Fixed Alternative Hypothesis

Under the fixed alternative hypothesis β , the Uniformly Most
Powerful (UMP) test is

Oracle = βT�−1Z, (1)
which directly follows from the Neyman–Pearson Lemma
(Bittman et al. 2009). One can easily see that the Oracle test
is a linear combination of Z with the coefficients depending
on the true β and �. It is natural to view this hypothesis
testing problem as a binary classification problem. We observe
a vector Z and need to decide whether Z is from the null H0
or the alternative Ha. This classification problem fits into the
framework of linear discriminant analysis (LDA). In fact, this
Oracle test can be viewed as the Fisher LDA (Fisher 1936), which
is the Bayes optimal classifier (Bickel and Levina 2004) and
provides the highest sensitivity uniformly at any given specificity
(Su and Liu 1993). In practice, we do not know the true β and
therefore we cannot perform this Oracle test. Nonetheless, we
can use it as an ideal benchmark for power comparisons with
those implementable tests.

Under the alternative hypothesis Ha: β �= 0, both β and cor-
relation matrix � are unknown. Equation (1) implies that only a
“smart” linear combination of individual Z-testing statistics that
is as close as possible to the unknown true quantity �−1β , can
be as powerful as the Oracle test, but at the potential risk of being
powerless if the linear combination is not “smart.”

2.2. Single Principal Component Tests for the Composite
Hypothesis

Consider the composite hypothesis H0: β = 0 versus Ha: β �= 0.
Using spectral decomposition, we have

� = U�UT =
K∑

k=1
λkukuT

k ,

where � is a diagonal matrix whose diagonal elements are the
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λK > 0 of �, and U
is the normalized orthogonal matrix whose kth column uk is
the kth eigenvector associated with the kth largest eigenvalue
λk of �. We also require that U is a proper rotation matrix,
that is, det(U) = 1 (Pettofrezzo 1978). The K eigenvectors
uk (k = 1, . . . , K) form an eigen-basis and hence constitute a
new orthogonal coordinate system in which the kth coordinate
direction corresponds to the kth principal component PCk. It is
straightforward to show that the distribution of PCk is

PCk = uT
k Z ∼ N(uT

k β , λk), 1 ≤ k ≤ K.
As ||uk||2 = 1, the noncentrality parameter (ncp) of PCk

under the alternative is

ncpk = (uT
k β)2

λk
= ||β||2{cos(θk)}2

λk
,
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where θk ∈ [0, 180◦] is the angle between the signal vector β and
the eigenvector uk and is defined as the kth principal angle (PA),
and ||β|| =

√∑K
k=1 β2

k which is defined as the overall signal
magnitude. An underlying constraint for the principal angles is
that

∑K
k=1 cos2(θk) = 1, which will be used for power analysis

later. If the kth principal component PCk is used as a testing
statistic for H0: β = 0 versus Ha: β �= 0, then its theoretical
power at significance level α is

Power = �(Z α
2

+ √
ncpk) + �(Z α

2
− √

ncpk),
where �(·) is the cumulative standard normal distribution func-
tion, and Z α

2
is its α/2 percentile. If θk = 0, then PCk is as

powerful as the Oracle test; however if θk = 90◦, then PCk
is powerless. This geometric perspective clearly explains why
using any particular PC could be powerless to detect association
signals in the situations where its principal angle is 90◦.

The principal angle of a PC measures the degree of similarity
between the direction of the PC of multiple phenotypes and the
direction of the genetic effect vector of an SNP on multiple phe-
notypes. When the principal angle of a PC is zero, it means that
the direction of the PC completely aligns with the genetic effect
direction, and is thus perfect for being used for summarizing
multiple phenotypes into a scalar super-phenotype for detecting
genotype-phenotype associations. If the principal angle of a PC
is 90 degree, it means that the PC contains no information
about the genetic effects and is thus not useful for detecting the
genotype-multiple phenotype associations.

The power analysis for single PC test serves as the building
blocks of the power analysis of combined PC-based tests. We
observe that the power of single PC test depends not only on β

but also � through its eigenvalues and eigenvectors, which will
be investigated by eigen-analysis in Section 5. It should be noted
that the PC directions of the Z-scores are often not the same as
the PC directions of the original phenotypes Y, as the Z-scores
have taken the confounders into account.

2.3. The PCMinP Test

As the signal vector β is unknown in practice, one usually has
no prior information about the true principal angles and thus
cannot decide which PC to use for association testing. Hence,
we propose to use the minimum principal component p-value
as a testing statistic named PCMinP,

PCMinP = min
1≤k≤K

pk,

where pk is the p-value based on PCk. In fact, PCMinP is
equivalent to using sup1≤k≤K |PCk|/√λk as a test statistic, and
hence can be viewed as a nonlinear combination of PCs. Because
the K PCs are mutually independent, so the p-value of PCMinP
can be easily computed as p = 1 − (1 − PCMinP)K .

Denote α∗ = 1 − (1 − α)1/K where α is a prespecified sig-
nificance level, then the power of PCMinP under the alternative
is

Power = 1 −
K∏

k=1

[
1 −

{
�(Z α∗

2
+ √

ncpk)

+ �(Z α∗
2

− √
ncpk)

}]
.

Suppose that ||β|| and λk are fixed, then the power of PCMinP
is maximized when θK = 0 and its maximal power is

Powermax = 1 − (1 − α)
K−1

K

{
1 − �

(
Z α∗

2
+ ||β||√

λK

)

− �

(
Z α∗

2
− ||β||√

λK

) }
.

This implies that PCMinP favors the alternatives under which
the last PC captures all the signals. Furthermore, the power
of PCMinP goes to 1 as λK → 0. The power of PCMinP is
minimized when cos2(θk) = λk/K (k = 1, . . . , K), and the
minimum power is

Powermin = 1 −
{

1 − �

(
Z α∗

2
+ ||β||√

K

)

− �

(
Z α∗

2
− ||β||√

K

)}K
.

The result follows directly from the inequality of arithmetic
and geometric means. This implies that the worst situation for
PCMinP is that all the PCs are equally powerful, for example,
when multiple phenotypes are independent, for example, � = I.

2.4. The PCFisher Test

PCMinP aims to pick the most powerful PC direction and
discards the other less powerful PCs. Hence, PCMinP does not
fully use available information contained in all the PCs. We
hereby propose to combine all the K independent principal
component p-values using Fisher’s method (Fisher 1932) with
its null distribution given by

PCFisher = −2
K∑

k=1
log(pk) ∼ χ2

2K .

PCFisher can also be viewed as a nonlinear combination of the
PCs,

PCFisher = −2
K∑

k=1
log{1 − Fχ2

1
(PC2

k/λk)}, (2)

where Fχ2
1
(·) represents the chi-squared cumulative distribution

function with one degree of freedom. Equation (2) implies that
PCFisher allocates larger weights to PCs with smaller eigen-
values. Therefore, PCFisher achieves its maximal power when
θK = 0 and achieves its minimal power when θ1 = 0 for
fixed ||β|| and λk. The Fisher’s p-value combination method is
asymptotically Bahadur optimal (ABO), in the sense that the p-
value of PCFisher converges to zero with the fastest rate under
the alternative when the sample size goes to infinity (Bahadur
1967; Littell and Folks 1971, 1973).

2.5. The Test Based on a Linear Combination of PCs

Motivated by the inverse variance weighting method commonly
used when combining independent tests (Mosteller, Bush, and
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Green 1954; Liptak 1958), we obtain the following linear com-
bination of PCs with each PC weighted by its inverse variance,

PCLC =
K∑

k=1

PCk
λk

∼ N(0,
K∑

k=1
λ−1

k ).

Under the alternative hypothesis, its noncentrality parameter is

ncp =
(∑K

k=1 λ−1
k uT

k β
)2

∑K
k=1 λ−1

k
=

||β||2
{∑K

k=1 λ−1
k cos(θk)

}2

∑K
k=1 λ−1

k
.

We now study when the power of PCLC will be maximized and
minimized with respect to θk, for any fixed ||β|| and λk. This
can be formulated as the following constrained optimization
problem:

max
cos(θk)

K∑
k=1

λ−1
k cos(θk)

s.t.
K∑

k=1
cos2(θk) = 1.

Using the Lagrange multiplier method, we obtain that the power
of PCLC is maximized when the principal angles satisfy the
following conditions:

cos2(θk) = λ−2
k∑K

k=1 λ−2
k

, k = 1, . . . , K. (3)

In fact, we can rewrite PCLC as PCLC = (U�−1J)TZ, where
J = (1, . . . , 1)T . Hence, PCLC will achieve its own maximal
power when β ∝ U�−1J, which is equivalent to Equation (3).
It can be easily seen that PCLC is powerless when β ⊥ U�−1J
where positive and negative genetic effects are canceled out. The
PCLC test can be as powerful as the Oracle test when β ∝ UJ,
or equivalently when all the principal angles are equal to each
other, that is, cos2(θk) = 1/K(k = 1, . . . , K). In other words,
when all the K principal angles are the same, PCLC is more
powerful than any other tests to detect such alternatives.

2.6. Quadratic Combination of PCs

PCLC is very sensitive to principal angles and can be powerless
as shown theoretically in Section 2.5 and empirically in the
simulation setting M5 in Table 3. To overcome this drawback, we
propose to combine PCs using the following weighted quadratic
function that weights the PCs by a function of the eigenvalues:

PCQγ =
K∑

k=1
λ

1−γ

k

(
PCk√

λk

)2
, 0 ≤ γ < +∞,

where γ controls the relative importance of each PC in the
quadratic combinations. For example, if PC1 captures most
of the signals, then we can choose smaller γ ; while if PCK
captures most of the signals, then we can choose larger γ . Let
Kγ = U�−γ UT and denote the transformation as φγ (Z) =
UTZ/λγ/2, then PCQγ can be rewritten as PCQγ = ZTKγ Z =
〈φγ (Z), φγ (Z)〉, where 〈·, ·〉 denotes the inner product in the
transformed feature space. From this point of view, PCQγ is a

kernel-based testing statistic (Liu, Lin, and Ghosh 2007). The
choice of γ is essentially a choice of kernel and reflects our prior
belief in the true alternative. We show in this section that several
commonly used tests with γ = 0, 1, 2 are special cases of PCQγ .

When γ = 0, PCQγ has the following form:

WI = PCQ0 =
K∑

k=1
PC2

k =
K∑

k=1
Z2

k ,

which follows from the fact that U is an isometric transforma-
tion and UUT = I. This choice of γ assumes a working indepen-
dence (WI) relationship among the K Z-scores since Kγ reduces
to an identity matrix. Under the null, WI follows a mixture of
chi-squared distribution

∑
j λjχ

2
1j, where λj are the eigenvalues

of � and χ2
1j are independent χ2

1 random variables. Hence, its p-
value can be computed using the exact method (Davies 1980). At
the significance level α, we reject the null hypothesis H0: β = 0
if

∑K
k=1 PC2

k > Cα where P(
∑K

k=1 PC2
k > Cα ; H0) = α. Thus,

the acceptance region of WI is a K-dimensional ball with radius
equal to

√
Cα . Although the acceptance region of WI is spher-

ically symmetric, however the probability distribution of Z is
not spherically symmetric unless � is an identity matrix. Under
the alternative, the power of WI favors the alternatives under
which PC1 captures all the signals. This is because PC1 has the
largest variance and hence signals from the PC1 direction are
more likely to fall outside of this ball-shape acceptance region
(see Figure 1).

When γ = 1, PCQγ becomes the classical Wald test as

Wald = PCQ1 =
K∑

k=1

PC2
k

λk
∼ χ2

K .

This can be easily shown using the fact that ZT
−1Z =
(UTZ)T�−1(UTZ) = ∑K

k=1 PC2
k/λk. At the significance level

α, its acceptance region is determined by
∑K

k=1 PC2
k/λk ≤ Cα ,

which is a K-dimensional ellipsoid and Cα is the 1−α percentile
of χ2

K . Under the alternative, the distribution of the Wald test
is a noncentral chi-squared distribution with noncentrality
parameter ncp = ∑K

k=1 ||β||2 cos2(θk)/λk. To know when the
Wald test achieves its maximal power for any fixed ||β|| and λk,
we can solve the following constrained optimization problem:

max
cos2(θk)

K∑
k=1

λ−1
k cos2(θk)

s.t.
K∑

k=1
cos2(θk) = 1.

Using standard linear programming technique, one can easily
show that the power of the Wald test is maximized when θK = 0,
that is, when signals lie in the last PC direction, and minimized
when θ1 = 0, that is, when signals lie in the first PC direction.
Again, even though the Wald test achieves its maximal power
when the last PC captures all the signals, this does not imply
the Wald test is more powerful than its competitors under such
alternatives.
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When γ = 2, PCQγ is

VC = PCQ2 =
K∑

k=1

PC2
k

λ2
k

.

In this case, PCQγ corresponds to the variance component (VC)
score test VC = ZT�−1�−1Z (Huang and Lin 2013; Liu and
Lin 2018), which assumes that the βk (k = 1, . . . , K) follow
a common distribution with mean 0 and variance τ and tests
for H0: τ = 0. The equivalence between VC and PCQ2 can be
seen by observing that VC = ZTU�−2UTZ = ∑K

k=1 PC2
k/λ

2
k.

Compared with the Wald test, VC gives even more weight to the
last PC and hence is more powerful than the Wald test when
θK = 0. VC follows a mixture of chi-squared distributions∑K

k=1 λ−1
k χ2

1k under the null, where λk are the eigenvalues of
� and χ2

1k are independent χ2
1 random variables, so its p-value

can be computed using the exact method (Davies 1980). The
acceptance region of VC is also a K-dimensional ellipsoid but
has a different shape from that of Wald as shown in Figure 1 in
Section 4.

Here, we present a simple example to illustrate the power
difference between the three quadratic tests: WI, Wald, and VC.
Suppose we have a bivariate normal Z-scores with correlation
ρ = 0.8. The first eigenvector is u1 = (1/

√
2, 1/

√
2) and

the second eigenvector is u2 = (−1/
√

2, 1/
√

2) by direct
calculation. If β = (2.5, 2.5)T which is in the direction of
u1, then the powers of WI, Wald, and VC are 0.75, 0.65, 0.09,
respectively; and if β = (−0.8, 0.8)T which is in the direction
of u2, then the powers of WI, Wald, and VC are 0.09, 0.61, 0.71,
respectively. This shows that the Wald test is less powerful than
WI when the first PC captures all the signals, and the Wald test is
less powerful than VC when the last PC captures all the signals.
More power comparisons among those three tests are provided
in Table 3.

3. The Omnibus PC-Based Tests

3.1. Adaptive Quadratic Combination of PCs

The results in Section 2.6 show that a lack of prior knowledge
about the true principal angle can lead to an unwise choice
of γ , and the resulting test might have little power to detect
the alternative. Therefore, we propose to choose γ in a data-
adaptive fashion by choosing γ using the data that yields the
smallest p-value, and then use this smallest p-value as a test
statistic. In practice, it is computationally expensive to perform
an exhaustive search for the optimal γ in the whole range.
Instead, we restrict our search within γ ∈ {0, 1, 2} and then
pick the smallest p-value among WI, Wald, and VC as a testing
statistic named PCAQ

PCAQ = min
γ

pγ ,

where pγ is the p-value of PCQγ for a given γ . Note that WI,
Wald, and VC tests are correlated as they are calculated using the
same data. Hence, their p-values pγ are correlated. Calculations
of the p-value of PCAQ need to take their correlations into
account. Specifically, the p-value of PCAQ can be calculated as

p = 1 − P{min
γ

Xγ > �−1(PCAQ)}, (4)

where Xγ = �−1(pγ ) and �−1(·) denotes the inverse standard
normal cumulative distribution function.

Equation (4) can be efficiently computed using the following
multivariate normal distribution function that has been imple-
mented in the FORTRAN language (Genz 1992, 1993) and also
wrapped in the R package mvtnorm (Genz et al. 2009). This
computation requires an input of the correlation matrix RX of
the vector (Xγ=0, Xγ=1, Xγ=2) which only needs to be estimated
once for the whole genome by the following algorithm:

1. Generate B random samples from Z ∼ N(0, 
).
2. Compute the p-values of PCQ on the bth sample for γ =

0, 1, 2, 1 ≤ b ≤ B.
3. Perform inverse-normal transformation Xγ = �−1(pγ ) on

the bth sample, where γ = 0, 1, 2.
4. Take the sample correlation matrix R̂X across the B realiza-

tions of Xγ .

In practice, one can take B = 1000 and this algorithm can
provide a good estimate of RX (in a few seconds) which can
be used for computing the p-values for millions of SNPs in the
whole genome.

3.2. The Omnibus PC-Based Test

The PCAQ test aims at constructing an optimal quadratic PC-
based test. To construct an omnibus test across linear, quadratic,
and other nonlinear tests, we can combine all the PC combina-
tion methods including PCMinP, PCFisher, PCLC, WI, Wald,
and VC together by taking the minimum p-value of them as
the omnibus test statistic named PCO. The p-values of those six
tests are correlated as they are calculated using the same data.
Similar to PCAQ, the p-value of PCO can also be computed
by first performing an inverse-normal transformation of the
p-value of the test statistic under consideration, then using a
multivariate normal distribution function with the correlation
matrix estimated using the same fast Monte Carlo simulation
method described above. Compared to PCAQ, PCO combines
three more nonquadratic tests and is expected to be more robust
than PCAQ for various alternatives. However, a price PCO
has to pay for combing more tests is that it might be slightly
less powerful than PCAQ when quadratic combinations of PCs
already have good power, for example, in the simulation setting
M3 in Table 3. PCO is expected to be more powerful than PCAQ
when any of PCLC, PCFisher, or PCMinP has better power
than the quadratic combinations of PCs to detect the signals,
as demonstrated in the simulation settings M4, M7, M12, M13,
and M15 in Table 3.

4. Comparison of the Rejection Boundaries of the
PC-Based Tests

In this section, we compare the proposed PC-based tests graph-
ically in terms of their rejection boundaries. For the ease of
illustration, we focus on the two-dimensional (Z1, Z2)

T space
as given in Figure 1. We also included the Oracle test for β =
(1, 1)T and β = (0, 1)T assuming the true alternative is known.
We set the correlation to be 0.6, so the two eigenvalues are λ1 =
1.6 and λ2 = 0.4, and the two corresponding eigenvectors are
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Figure 1. The rejection boundaries of the proposed PC-based tests for bivariate normal test statistics (Z1, Z2) with correlation equal to 0.6. The dashed lines or curves
represent the boundaries that separate the acceptance and rejection regions at the significance level 0.05. The longer solid lines with arrows represent the PC1 direction,
the shorter solid lines with arrows represent the PC2 direction, and the lengths of the longer and shorter solid lines with arrows are equal to 6

√
λ1 and 6

√
λ2, respectively.

For PCLC, the added solid line with “T”-type arrows illustrates the direction for alternative β which is orthogonal to its rejection boundaries, where θ1 = 76◦ and θ2 = 14◦ .

u1 = ( 1√
2 , 1√

2 )T and u2 = (− 1√
2 , 1√

2 )T , respectively. Suppose
that the true alternative is β = (1, 1)T which is in the same
direction of u1, then PC1 has the same rejection boundary as
the Oracle test. Suppose that the true alternative is β = (0, 1)T

which is in the same direction of UJ where U = (u1, u2) is the
eigenvector matrix and J = (1, 1)T , then PCLC has the same
rejection boundary as the Oracle test. One can further deduce
that PC2 will have the same rejection boundary as the Oracle test
if the true alternative is proportional to u2. We observe that all
the proposed tests have convex acceptance regions. Hence, the
proposed tests are all admissible (Birnbaum 1954, 1955). This
implies that each test can be more powerful than its competitors
for some alternatives but less powerful for others.

The rejection boundaries of PC1 and PC2 are all straight
lines but are orthogonal to each other, indicating that these two
PCs aim to detect orthogonal alternatives. PC2 has a narrower
gap between the two rejection boundary lines than that of PC1,
because PC2 has a smaller variance (eigenvalue). The rejection
boundaries of PCLC are also straight lines but are not orthog-
onal to either PC1 or PC2. The angle between the rejection
boundary lines of PCLC and PC1 is 14◦. Hence, if the mean
vector β also has angle 14◦ with PC1 direction, then β is parallel

to the rejection boundaries of PCLC and will never be detected
by PCLC. If β has angle 76◦ with PC1 direction as shown by
the solid line with “T”-type arrows, then β is orthogonal to the
rejection boundaries of PCLC (shortest distance to the null) and
will be detected by PCLC with its maximal power. However, this
does not imply PCLC is more powerful than its competitors to
detect the alternatives in the direction of the solid line with “T”-
type arrows because PCLC is not as powerful as the Oracle test
for such alternatives.

The rejection boundary of PCMinP is a tilted rectangle
with the edge lengths proportional to

√
λk, k = 1, 2. PCMinP

achieves its maximal power when β is in the PC2 direction
(shortest distance to the null), while achieves its minimal power
when β points to the four corners, under which PC1 and PC2
have equal powers. The rejection boundaries of Wald and VC
are both ellipses. However, the minor axis of VC is shorter than
that of Wald, while the major axis of VC is longer than that of
Wald. This implies that VC is more powerful than Wald when
β is in the PC2 direction. The rejection boundaries of PCFisher
are similar to that of Wald, which well explains why they have
similar powers as will be demonstrated in the simulation studies.
The rejection boundary of WI is a circle and WI actually favors
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alternatives in the PC1 direction because it is more likely for the
signals to fall outside of the rejection boundary of WI along the
PC1 direction compared to other PC directions.

We observe that the rejection boundaries of PCMinP, PCAQ,
and PCO resemble each other because these three tests all use
the minimum p-value as testing statistics across certain sets of
tests and hence are data adaptive. The rejection boundary of
PCAQ is smooth and does not have sharp angles like that of
PCMinP. The rejection boundary of PCO is more bumpy than
that of PCAQ since it combines linear and nonlinear tests. The
rejection boundary comparisons well explain the differences
and connections between the proposed PC-based tests, and
illustrate that there is no UMP test for all the β directions.

5. Eigen-Analysis of Correlation Matrices and Their
Effects on the PC-Based Tests

The results in Sections 2 and 3 show that the powers of the PC-
based tests depend on the principal angles θk, the eigenvalues
λk for a fixed norm of β . To test for associations between an
SNP and a set of multiple phenotypes, a question of practical
interest is that how the PC-based tests perform in the presence
of a mixture of signal and noise phenotypes, especially when
signals are sparse. For example, in studying the effects of an
SNP on a genetic pathway/network consisting of multiple gene
expressions, it is common that an SNP affects some gene expres-
sions but not others in the genomic pathway/network. In this
section, we investigate how the correlation structure of � affects
its eigenvalues and eigenvectors, and subsequently affects the
powers of PC-based tests. Suppose that K1 out of K phenotypes
are associated with a genetic variant and K0 = K − K1 of them
are not, that is, the signal vector β contains K1 nonzeros (signals)
and K0 zeros (noises), denoted as βT = (β1, . . . , βK1 , 0, . . . , 0).
For �, we consider the following partitioned correlation matrix:

� =
(

�1 �2
�T

2 �3

)
,

where �1 and �3 denote the correlation matrices among signal
and noise phenotypes, respectively, and the (i, j)th element of
�2 denotes the correlation between the ith signal phenotype and
the jth noise phenotype, 1 ≤ i ≤ K1, 1 ≤ j ≤ K0. We first obtain
eigen-analysis results for special structured correlation matrices
�, and then consider more general situations.

5.1. Exchangeable Correlation Matrices

If � is exchangeable with correlation ρ > 0, then its eigenvalues
are

λ1 = (K − 1)ρ + 1; λk = 1 − ρ, k = 2, . . . , K,

where the algebraic multiplicities of λ1 and λk are one and
K − 1, respectively. This implies that the eigenspace associated
with λ1 is of dimension one and can be spanned by eigenvector
uT

1 = ( 1√
K

, 1√
K

., . . . , 1√
K
), while the eigenspace associated with

eigenvalue λk, k = 2, . . . , K is of dimension K − 1 and can be
expressed as

Eλ=1−ρ = {u ∈ RK :
K∑

k=1
uk = 0}.

Actually, there are infinitely many possible choices of the K − 1
eigenvectors in Eλ=1−ρ when K ≥ 3, and hence infinitely many
possible choice of PCk, k = 2, . . . , K.

The first eigenvalue (K − 1)ρ + 1 is usually much larger
than eigenvalue 1 − ρ for relatively large K. Such a correlation
structure is related to the spiked population co-variance model
(Johnstone 2001). The principal angle between β and u1 is 0
when β = (1, 1, . . . , 1)Tc where c is a nonzero scalar, and is
90◦ when

∑K
k=1 βk = 0. Therefore, PC1 can best detect fully

dense homogeneous signals, and its power decreases when the
signals become sparser or in different directions. In addition,
the power of PC1 decreases when the correlation ρ increases.
When signals are fully dense and homogeneous, the WI test will
also have good power, but the Wald and VC tests might have low
power. For example, in the simulation study, when K = 40 and
ρ = 0.2, the WI test has power of 0.82 to detect fully dense and
homogeneous signals β = (1.4, 1.4, . . . , 1.4)T , but the Wald test
has power of only 0.24 as shown in the setting M9 in Table 3.
However, if the signals are heterogenous and

∑K
k=1 βk = 0 with

at least one βk nonzero, β is in the eigen-space Eλ=1−ρ and can
be detected by Wald and VC with good power but not WI.

5.2. Block Diagonal Exchangeable Correlation Matrices

If �1 and �3 are exchangeable with correlations ρ1, ρ3, respec-
tively, and the K1 signal phenotypes are uncorrelated with the
K0 noise phenotypes, then the four unsorted eigenvalues of 


and their algebraic multiplicities are

λ1 = 1 + (K1 − 1)ρ1, ν(λ1) = 1;
λ2 = 1 − ρ1, ν(λ2) = K1 − 1;
λ3 = 1 + (K0 − 1)ρ3, ν(λ3) = 1;
λ4 = 1 − ρ3, ν(λ4) = K0 − 1.

The signal phenotype eigen-spaces are

Eλ1 = {u ∈ RK : uT = t(1/
√

K1, . . . , 1/
√

K1,︸ ︷︷ ︸
K1

0, . . . , 0︸ ︷︷ ︸
K0

), t ∈ R},

Eλ2 = {u ∈ RK :
K1∑

k=1
uk = 0, uK1+1 = · · · = uK = 0},

and the noise phenotype eigen-spaces are

Eλ3 = {u ∈ RK : uT = t(0, . . . , 0,︸ ︷︷ ︸
K1

1/
√

K0, . . . , 1/
√

K0︸ ︷︷ ︸
K0

), t ∈ R},

Eλ4 = {u ∈ RK :
K∑

k=K1+1
uk = 0, u1 = · · · = uK1 = 0}.

Because the signal and noise phenotype eigen-spaces are
orthogonal to each other, thus those K0 PCs in the noise eigen-
space are all powerless to detect any signals. Therefore, we only
need to focus on discussing the powers of the K1 PCs in the
signal phenotype eigen-spaces. From Section 5.1, we know that
the PC in Eλ1 can best detect homogeneous effects while the PCs
in Eλ2 can best detect heterogenous effects. Actually, as long as
some principal angle is zero, then that particular PC with zero
principal angle in the signal eigen-space is as powerful as the
Oracle test, regardless of signal sparsity.
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5.3. Block Diagonal Correlation Matrices

We now consider more general situations where �1 and �3 are
unstructured. By performing spectral decomposition on these
two matrices, we have �1 = U1�1UT

1 and �3 = U3�3UT
3 ,

where �1 and �3 are diagonal matrices with diagonal elements
the eigenvalues, U1 and U3 are eigenvector matrices. If the signal
and noise phenotypes are uncorrelated, then we have(

�1 0
0 �3

)
=

(
U1 0
0 U3

)(
�1 0
0 �3

)(
U1 0
0 U3

)T
.

Therefore, the PCs from the signal eigen-space allocate zero
loadings for the noise phenotypes. In other words, if signal and
noise phenotypes are uncorrelated, then the PCs from the signal
eigen-space are not contaminated by any noise phenotypes and
thus one particular PC from the signal eigen-space can be as
powerful as the Oracle test if its principal angle is zero, regardless
of signal sparsity.

6. Simulation Studies

6.1. Type I Error Rates

Single PC tests and PCLC follow the standard normal distribu-
tion under the null so that their Type I error rates are always well
controlled, hence we omit their Type I error results. Besides the
Wald test, we evaluate the sizes of the proposed PC-based tests,
including the p-value-based tests PCMinP and PCFisher, and
quadratic tests WI and VC, and the omnibus tests PCAQ and
PCO, at the nominal levels α = 0.05, 0.01, 0.001, 10−4, 10−5,
in view of the small significance levels that are of common
interest in GWAS. For comparison purpose, we also included
the p-value correction method TATES (van der Sluis et al. 2013)
for comparison purpose which also only requires GWAS sum-
mary statistics. We first consider a low-dimensional unstruc-
tured covariance matrix �unK3 estimated from the global lipids
data (Teslovich et al. 2010) for high-density lipoprotein choles-
terol (HDL), total cholesterol (TC), and triglycerides (TG),

�unK3 =
⎡
⎣ 1.00 0.16 −0.42

0.16 1.00 0.38
−0.42 0.38 1.00

⎤
⎦ . (5)

We also consider a high-dimensional (K = 100) unstruc-
tured covariance matrix �unK100 generated using the algorithm
described in Marsaglia and Olkin (1984) and the actual matrix
is provided in the supplementary excel file. We generated 10
millions of multivariate normal samples of dimensions K = 3
and K = 100 with mean zeros and covariance matrices equal to
�unK3 and �unK100, respectively. We found that the Type I error
rates of the PC-based tests are well controlled at those nominal
levels as summarized in Table 1. The Type I error rates of the
p-value correction method TATES are slightly inflated, in line
with previous findings by He, Avery, and Lin (2013).

6.2. Power Comparisons of the PC-Based Tests

As shown in Figure 1, different tests have different rejection
boundaries and the power of each test depends on both the
mean vector and the covariance matrix of Z. We first provide

empirical evidence using bivariate phenotypes to show that the
powers of the PC-based tests depend on the direction of the
true β for a fixed between-phenotype correlation matrix, and
no single test is most powerful for all directions of β , while the
omnibus tests are more robust.

Consider a bivariate standard normal (Z1, Z2)
T with ρ = 0.6

and mean β = (β1, β2)T �= 0 under the alternative. Using the
polar coordinate system, we can rewrite β = r{cos(φ), sin(φ))},
where r ≥ 0 and φ ∈ [0, 360◦]. For illustrative purpose, we set
r = 2. Then the power of each test is a function of φ only. We
divide the interval [0, 360◦] equally into 72 subintervals speci-
fied by 73 grid points, φb = 0, 5◦, . . . , 360◦, b = 1, 2, . . . , 73.
For each φb, we generated one million standard bivariate normal
samples with ρ = 0.6 and obtained one million p-values for
each test. The power of each test for each φb is estimated by
the proportion of p-values that are less than α = 0.05. By
connecting the 73 power points of each test, we obtain the power
function curves in Figure 2.

We found a periodic pattern of the power curves with period
equal to 180◦, and within each period, the power of each test
is a function of φ, where φ specifies the direction of β in R2.
PC1 is as powerful as the Oracle test when φ = 45◦, 225◦ or
equivalently when β = ±(

√
2,

√
2)T , and consequently WI is

almost as powerful as the Oracle test in such settings. Likewise,
PC2 is as powerful as the Oracle test when φ = 135◦, 315◦ or
equivalently when β = ±(−√

2,
√

2)T , and VC is almost as
powerful as the Oracle test (more powerful than Wald) in these
settings. Wald and PCFisher have almost the same power curves.
PCLC is as powerful as the Oracle test when φ = 90◦, 270◦,
or β = ±(0, 2)T . The omnibus tests PCAQ and PCO are
never as powerful as the ideal Oracle test, but are robust to the
alternatives with little power loss compared to the Oracle test.
When either the first or the last principal angle is zero, PCAQ
and PCO can be more powerful than Wald.

In low-dimensional settings where K = 3 (M1–M5), we
consider an unstructured correlation matrix �unK3 given in
Equation (5) and the following five mean vectors: β1 = (−1.94,
1.58, 2.87), β2 = (2.31, 2.62, 0.1), β3 = (0.99, −0.94, 1.18),
β4 = (0.94, 0.86, 1.92), β5 = (0.79, 3.2, 0.16). We also consider
K = 8 and an unstructured correlation matrix �unK8 given in
Table 4 of Section 7, and three mean vectors: β6 = 4.5u1 =
(1.18, 0.69, 1.33, −2.39, 1.39, 2.66, 1.27, 0.52), β7 = 3.5u4 =
(−0.8, 1.04, 0.74, 0.39, 1.69, −0.01, −0.67, −2.55), and β8 =
2.5u8 = (0.08, −0.02, −0.11, 1.54, −0.65, 1.83, −0.08, −0.24),
where u1, u4, u8 denote the first, fourth, and eighth eigenvectors
of �unK8, respectively.

In high-dimensional settings, we first consider K = 40 and
an exchangeable correlation matrix �exK40 with off-diagonal
correlation ρ = 0.2, and a fully dense and homogeneous
signal vector β9 = (1.4, 1.4, . . . , 1.4) as in setting M9. In
setting M10, the correlation matrix �bexK40 is block diagonal
where the signal (K1 = 6) and noise (K0 = 34) blocks are
exchangeable with correlations equal to 0.5 and 0.2, respectively,
and the signal vector is sparse and β10 = (1.98, −1.51,
−0.12, −0.12, −0.12, −0.12, 0, . . . , 0) with 6 nonzero elements
and 34 zero elements. We also consider K = 100 and
an unstructured correlation matrix �unK100 (provided in
supplementary excel file) generated using the Marsaglia and
Olkin (1984) algorithm. In settings M11 and M12, consider
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Table 1. Type I error rates estimated as the proportions of p-values less than significance level α in 107 simulation replications under the nulls in both low- and high-
dimensional settings.

Low-dimensional setting: K = 3, covariance matrix is �unK3

α PCMinP PCFisher WI Wald VC PCAQ PCO TATES

0.05 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.051
0.01 0.010 0.010 0.010 0.010 0.010 0.0099 0.0099 0.011
0.001 0.001 0.00099 0.001 0.001 0.001 0.001 0.00099 0.00106
10−4 9.75 × 10−5 1.01 × 10−4 1.02 × 10−4 1.01 × 10−4 1.02 × 10−4 9.81 × 10−5 9.93 × 10−5 1.08 × 10−4

10−5 1.03 × 10−5 9.32 × 10−6 8.33 × 10−6 8.61 × 10−6 8.52 × 10−6 8.47 × 10−6 9.71 × 10−6 1.05 × 10−5

High-dimensional setting: K = 100, covariance matrix is �unK100
α PCMinP PCFisher WI Wald VC PCAQ PCO TATES

0.05 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.051
0.01 0.010 0.010 0.010 0.010 0.010 0.0099 0.0099 0.011
0.001 0.001 0.00099 0.001 0.001 0.001 0.001 0.00099 0.00106
10−4 9.65 × 10−5 1.01 × 10−4 1.02 × 10−4 1.01 × 10−4 1.02 × 10−4 9.86 × 10−5 9.95 × 10−5 1.06 × 10−4

10−5 1.02 × 10−5 9.38 × 10−6 8.46 × 10−6 8.78 × 10−6 8.99 × 10−6 9.37 × 10−6 9.78 × 10−6 1.05 × 10−5

Figure 2. This figure shows the power curve of each PC test for alternatives β = r(cos(φ), sin(φ)) where r = 2 and φ ∈ [0, 360◦] are the polar coordinates. The bivariate
correlation is ρ = 0.6. This figure mirrors the rejection boundaries as shown in Figure 1.

two sparse signal vectors β11 = (0.03, 0.04, −0.02, 0.05, −0.04,
0.01, 0.02, 0.09, −0.13, −0.02, 0, . . . , 0) and β12 = (−0.17, 0.4,
−0.05, 0.19, −0.68, 0.21, 0.3, −0.28, 0.29, −0.11, 0, . . . , 0) that
both contain 10 nonzero elements and 90 zeros. In settings
M13-M15, consider three dense signal vectors (provided in
the supplementary excel file): β13 contains 90 signals and 10
noises, β14 and β15 are set to be proportional to the first and
the eightieth eigenvectors of �unK100, respectively.

For each setup, we generated 105 multivariate normal sam-
ples with mean equal to β and correlation matrix equal to �

and obtained 105 p-values for each test. The empirical power
was calculated as the proportion of p-values less than α = 0.05.
We summarize the power results in Table 3. The results show
that whenever θk = 0, then PCk is as powerful as the Oracle
test as shown in the low-dimensional settings from M1 to M3.
PC1 requires a larger overall signal magnitude ||β|| to have com-
parable power as that of PC3, simply because PC1 has a larger
variance. As expected, WI is more powerful than Wald and VC
whenever PC1 is the Oracle test, while VC is more powerful than
WI and Wald whenever the last PC is the Oracle test. PCLC is
as powerful as the Oracle test as shown in the setting M4 where

the three principal angles are equal to each other, and PCLC is
powerless in the setting M5 where the signal vector β is parallel
to the rejection boundary of PCLC. The TATES method can
have comparable power to PCO in settings M1, M2, and M5,
but it can perform poorly in settings M3 and M4. By contrast,
the PCO always has good power in all those five settings M1–
M5. In M6, the PC1 test attains the Oracle power, and hence WI
and PCMinP are both more powerful than the Wald test, the
adaptive omnibus tests PCAQ and PCO also outperform Wald.
In setting M7 where we set the fourth principal angle to be zero,
and thus the Wald test outperform WI and VC in this setting,
but is still less powerful than PCMinP. PCO outperforms Wald
because PCMinP is one of its combining component. In M8
where the last principal angle is set to be zero, the last PC is the
Oracle test and VC is more powerful than Wald. PCAQ and PCO
also outperform Wald. The TATES method has comparable
power to PCO in M6 but performs poorly than PCO in M7–M8.

In high-dimensional setting M9, PC1 has the Oracle power
to detect fully dense homogeneous signals simply because the
first principal angle is zero, while both PCFisher and Wald
have very low power in this setting. The TATES method is
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Table 2. Parameter configurations for power comparison in simulation studies. The numbers in the three columns correspond to principal angles θ1, θ2, θK are in the unit
of degree. The last column represents the power of the Oracle test.

Setup K β � ||β|| θ1 θ2 θK Oracle

M1 3 β1 �unK3 3.8 0 90 90 0.85
M2 3 β2 �unK3 3.5 90 0 90 0.89
M3 3 β3 �unK3 1.8 90 90 0 0.85
M4 3 β4 �unK3 2.3 54.7 54.7 54.7 0.79
M5 3 β5 �unK3 3.3 71.2 27.5 109.7 0.91
M6 8 β6 �unK8 4.5 0 90 90 0.93
M7 8 β7 �unK8 3.5 90 90 90 0.94
M8 8 β8 �unK8 2.5 90 90 0 0.92
M9 40 β9 �exK40 8.85 0 90 90 0.83
M10 40 β10 �bexK40 2.5 90 90 0 0.94
M11 100 β11 �unK100 0.18 90 90.3 3.6 0.92
M12 100 β12 �unK100 1.0 90 90 90 0.97
M13 100 β13 �unK100 3.38 90 90 90 0.97
M14 100 β14 �unK100 15.0 0 90 90 0.88
M15 100 β15 �unK100 2.0 90 90 90 0.97

Table 3. Powers estimated as the proportions of p-values less than significance level α = 0.05 in 105 replications under various alternatives. The setups are described in
Table 2.

Low-dimensional setting: K = 3 and K = 10
Setup PC1 PC2 PCK PCMinP PCFisher PCLC WI Wald VC PCAQ PCO TATES

M1 0.85 0.05 0.05 0.76 0.72 0.23 0.81 0.74 0.31 0.76 0.75 0.77
M2 0.05 0.89 0.05 0.80 0.75 0.30 0.79 0.77 0.44 0.73 0.77 0.77
M3 0.05 0.05 0.85 0.74 0.70 0.67 0.23 0.72 0.84 0.81 0.77 0.28
M4 0.17 0.23 0.59 0.53 0.63 0.79 0.42 0.65 0.68 0.65 0.72 0.43
M5 0.14 0.75 0.45 0.75 0.82 0.05 0.73 0.82 0.71 0.79 0.78 0.78
M6 0.93 0.05 0.05 0.76 0.61 0.14 0.84 0.67 0.32 0.80 0.75 0.71
M7 0.05 0.05 0.05 0.81 0.66 0.23 0.67 0.72 0.68 0.66 0.75 0.59
M8 0.05 0.05 0.92 0.76 0.61 0.34 0.33 0.67 0.83 0.78 0.74 0.34

High-dimensional setting: K = 40 and K = 100
Setup PC1 PC2 PCK PCMinP PCFisher PCLC WI Wald VC PCAQ PCO TATES

M9 0.83 0.05 0.05 0.42 0.21 0.06 0.82 0.24 0.06 0.75 0.68 0.59
M10 0.05 0.05 0.94 0.64 0.30 0.12 0.10 0.36 0.55 0.45 0.56 0.20
M11 0.05 0.05 0.92 0.53 0.18 0.66 0.05 0.22 0.92 0.85 0.83 0.05
M12 0.05 0.05 0.05 0.75 0.24 0.09 0.05 0.31 0.07 0.19 0.63 0.06
M13 0.06 0.05 0.05 0.73 0.23 0.06 0.07 0.28 0.05 0.19 0.61 0.09
M14 0.88 0.05 0.05 0.42 0.15 0.04 0.86 0.18 0.05 0.77 0.71 0.70
M15 0.05 0.05 0.07 0.72 0.24 0.06 0.06 0.30 0.07 0.20 0.58 0.06

less powerful than the PCO in M9. In M10 where the signals
are sparse, we additionally considered the MinP test defined
as the minimum p-values across all the K original Z-testing
statistics as in Conneely and Boehnke (2007), which is designed
to detect sparse signals. The power of MinP (not reported in
Table 3) is 0.20, smaller than the powers of PCFisher, Wald, VC,
PCAQ, and PCO. This surprising result demonstrates that PC-
based tests can outperform MinP for detecting sparse signals
by leveraging on the between-phenotype correlation structures.
The TATES method also has very low power in M10. In high-
dimensional settings M11 and M12 where the signals are sparse,
the MinP and the TATES methods are almost powerless while
PCO has very good power to detect these two sparse signals.
The Wald test also performs poorly in these two settings. For
dense signals in settings M13 and M15, the TATES method is
almost powerless and the Wald test also has very low power,
while the PCO test still has good power. In setting M14 where
we set the first principal angle to be zero, PC1 is the Oracle test
and the WI test is thus very powerful, while the Wald test has
very low power. The TATES method has comparable power to
the PCO test in M14. We found that the TATES method has
similar performance to the WI test, which can be explained by
the similarities between the rejection boundaries of these two

tests. The rejection boundary of the TATES method is provided
in Figure S1 in Section S1 of the supplementary materials.

7. Joint Analysis of Multiple Metabolic
Syndrome-Related Phenotypes

We are interested in detecting the genetic associations between
individual SNPs and multiple phenotypes of metabolic syn-
drome using the GWAS summary statistics of the MetS-related
phenotypes from the four international consortia described in
the Introduction section. The GWAS summary statistics from
these four consortia are publicly available. The website links
for those datasets are provided in Section S2 in the supple-
mentary materials. However, the individual level phenotype and
genotype data are not directly accessible. Hence, any multiple
phenotype analysis method that requires individual level data
cannot be applied. The single-trait GWAS analysis performed
by the four international consortia might miss susceptible SNPs
that are associated with MetS, even with very large sample sizes,
because the genetic effects of common variants are usually small.

To increase analysis power for identifying additional SNPs
associated with MetS, we applied the proposed PC-based testing
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Table 4. The correlation matrix � of single-trait GWAS Z-scores estimated using the MetS GWAS summary statistics datasets. The eigen-values of � are: 1.75, 1.26, 0.99,
0.95, 0.94, 0.82, 0.75, 0.54.

� BMI FG FI HDL LDL TG WHR SBP

BMI 1 −0.02 −0.04 −0.2 0.05 0.16 −0.01 −0.03
FG −0.02 1 0.2 −0.02 0.01 0.05 0.03 0.08
FI −0.04 0.2 1 −0.11 0.03 0.15 0.12 0.08

HDL −0.2 −0.02 −0.11 1 −0.09 −0.42 −0.11 0
LDL 0.05 0.01 0.03 −0.09 1 0.24 0.06 0
TG 0.16 0.05 0.15 −0.42 0.24 1 0.15 0.07

WHR −0.01 0.03 0.12 −0.11 0.06 0.15 1 0.06
SBP −0.03 0.08 0.08 0 0 0.07 0.06 1

Table 5. The numbers of newly detected SNPs (not reported by the original GWAS studies) that reached the genome-wide significance at α = 5 × 10−8 by joint analysis
of the eight MetS-related traits (BMI, FG, FI, HDL, LDL, TG, WHR, SBP) using the proposed PC-based tests and the TATES method before and after LD pruning.

LD Pruning PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Before 23 7 16 6 29 32 19 108
After 7 2 3 1 5 4 1 26

LD Pruning PCMinP PCFisher PCLC WI Wald VC PCAQ PCO TATES

Before 123 404 7 210 458 476 682 581 3
After 25 60 3 42 65 69 103 98 1

procedures and the TATES method (van der Sluis et al. 2013)
to the GWAS summary statistics data by jointly analyzing the
eight MetS-related traits described in the Introduction. They
include Body Mass Index (BMI), Fasting Glucose (FG), Fast-
ing Insulin (FI), High-Density Lipoprotein cholesterol (HDL),
Low-Density Lipoprotein cholesterol (LDL), triglycerides (TG),
Waist-hip-ratio (WHR), and Systolic Blood Pressure (SBP). We
first merged these four GWAS summary statistics datasets using
the common 1,999,568 SNPs shared by the four datasets. We
then performed our proposed PC-based tests using these uni-
variate Z-scores, and also applied the TATES method on the uni-
variate p-values. The correlation matrix � among these MetS-
related traits was estimated by the sample correlation matrix
across approximately independent SNPs after LD pruning (Zhu
et al. 2015; Liu and Lin 2018), and is provided in Table 4.

The QQ plots for the GWAS analysis using the PCA-based
methods and the TATES method are provided in Section S2 of
the supplementary materials and show the proposed methods
had good genomic control. If an SNP was associated with any
of the eight MetS-related phenotypes, then it should have been
reported previously in the single trait analysis published in the
literature. Therefore, the newly detected SNPs are those SNPs
that were detected by multiple phenotype analysis but were
missed by previous single-trait analysis performed by the four
international consortia. In other words, the p-values of those
newly detected SNPs are not genome-wide significant in any of
the eight single-trait GWAS studies. Since the identified SNPs
might be in linkage disequilibrium (LD) with each other, we
performed LD pruning to obtain almost independent SNPs
using the LD threshold r2 < 0.01 within each 500kb region
by PLINK (Purcell et al. 2007). After LD pruning, we greatly
reduced the numbers of newly detected significant SNPs, indi-
cating that many newly detected SNPs are in LD with each other.
The numbers of new SNPs detected by each test are summarized
in Table 5.

In what follows, we only report and discuss the identified
SNPs after LD pruning. The last PC detected 26 SNPs after
LD pruning, more than the other seven PCs. As expected, VC

detected more SNPs than Wald and WI. PCAQ, which combines
WI, Wald, and VC, detected 103 SNPs, while PCO detected 98
SNPs. PCO detected slightly fewer SNPs than PCAQ because
PCLC, PCFisher, and PCMinP did not contribute more new
SNPs in addition to the WI, Wald, and VC tests. Note by com-
bining more tests, PCO pays a higher price than PCAQ in the
p-value adjustment. This is because PCO takes the smallest p-
value of the six tests as the test statistic, while PCAQ only uses
the smallest p-value of the three tests (WI, Wald, and VC) as
the test statistic. Many SNPs can be detected by more than one
test. For example, 95 SNPs can be detected by both PCAQ and
PCO as shown in Figure 3. It can also be seen from Figure 3
that VC and Wald detected 40 SNPs in common, while VC
detected 29 SNPs that Wald failed to detect, and Wald detected
25 SNPs that VC failed to detect. This illustrates that each
test can be more powerful than the others in some scenarios
because of its admissibility property. It should be noted that
our proposed adaptive omnibus tests PCAQ and PCO detected
more SNPs than nonadaptive tests, demonstrating their robust
performance.

The TATES method only detected three new SNPs missed
by the original single-trait GWAS studies. They are rs9600212
(p = 1.08 × 10−13), rs9592962 (p = 1.45 × 10−12), rs9592961
(p = 7.12 × 10−12), within a 2kb intronic region of gene KLF12
on chromosome 13 before LD pruning. The most significant
SNP rs9600212 was retained after LD pruning. These three SNPs
were also detected by PCFisher, WI, Wald, VC, PCAQ, and PCO.
Note that KLF12 was found to be associated with the duration
of the Q, R, and S waves (QRS duration), which measures the
duration of ventricular muscle depolarization seen on a typical
electrocardiogram and hence might play a role in affecting heart
functions (Sotoodehnia et al. 2010).

Note that it is possible that an SNP can be detected by single-
trait analysis but might not be detected by multiple trait analysis
using PC-based tests or the TATES method. For example, SNP
rs6129779 on chromosome 20 was found to be associated with
LDL (p = 4.04 × 10−9) and has been reported by the GLGC
(Willer et al. 2013), but it was not detected using the proposed
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Figure 3. Venn diagrams for the overlapping SNPs detected by Wald, VC, PCAQ, and
PCO tests after LD pruning.

PC-based tests or the TATES method. This is because there is
only one weak signal mixed with seven noises, and thus joint
analysis using either PC-based tests or the TATES method might
not be able to detect this rare and weak signal with sufficient
power.

We now take a subset of the newly detected SNPs presented
in Table 6 to illustrate the differences and connections of our
proposed PC-based tests. For the 10 SNPs in Table 6, none of
their phenotype-specific p-values reached the genome-wide sig-
nificance threshold, so those 10 SNPs were not identified by the
original single-trait analysis performed by the four international
consortia. We also estimated the eight empirical principal angles

(provided in the supplementary excel file) for each of the 10
SNPs by calculating the angles between the Z-score vector and
the eigenvectors of the correlation matrix in Table 4 to help
illustrate the concept of principal angle in this real data example.
For SNP rs355838, its first principal angle was estimated as
41.8◦ and the p-value of PC1 was 1.53 × 10−9, and all the
other seven principal angles for this SNP were more closer
to 90◦ and the p-values of all the other seven PCs were not
genome-wide significant. Intuitively, this means that the genetic
effect vector of SNP rs355838 is more similar to the first PC
direction and less similar to the other PC directions. Using the
first PC will more likely detect this association signal. As a result,
the p-value of WI, which has a similar performance to PC1,
for detecting SNP rs355838 is more significant than those of
PCFisher, Wald, and VC. Biologically, SNP rs355838 is located
in an intronic region of gene COBLL1, which was reported as
a pleiotropic gene that was associated with metabolic syndrome
and inflammation by Kraja et al. (2014). Specifically, this SNP
was found to be associated with at least one metabolic trait and
one inflammatory marker.

The last principal angle of SNP rs8321 was estimated to be
38◦, and all the other seven principal angles for this SNP were
more closer to 90◦. The p-value of the last PC was 1.71 × 10−11,
and hence VC was more significant than Wald, WI, PCFisher,
PCLC, and PCMinP. Another example is SNP rs308971 whose
first principal angle was estimated to be 29.26◦ and the p-value
of the first PC was 4.39 × 10−8, while the p-values of all the
other seven PCs were not genome-wide significant, because
their principal angles are closer to 90◦. For this SNP rs308971,
the p-value of WI test was 2.48 × 10−10 while the Wald and
VC tests were not even genome-wide significant. This gene
SYN2 was found to be related to type 2 diabetes (Zeggini et al.
2008).

As for SNP rs9394279, the p-value of PCLC was 1.4 ×
10−8 while the p-values of WI, Wald, VC, and PCAQ were
not genome-wide significant. The PCO test which contains

Table 6. p-Values of a selected subset of new SNPs detected by PC-based tests. The p-values of PCAQ and PCO for the first SNP rs355838 are reported as < 10−15 due to
the numerical precision limits of the R package mvtnorm. CHR represents chromosome number.

SNP CHR Gene FG FI HDL LDL TG WHR BMI SBP

rs355838 2 COBLL1 1.78E-01 1.56E-07 4.10E-07 3.05E-05 1.21E-04 1.70E-07 7.80E-06 1.13E-01
rs8321 6 ZNRD1 1.12E-01 2.96E-01 1.69E-05 1.91E-01 1.05E-06 1.10E-01 3.87E-01 3.19E-01
rs5754352 22 UBE2L3 5.21E-02 9.09E-01 6.57E-08 3.33E-02 9.11E-03 5.70E-01 5.93E-04 2.88E-01
rs308971 3 SYN2 5.25E-03 2.78E-06 3.27E-03 2.36E-02 3.51E-05 1.50E-04 5.54E-01 1.29E-02
rs2269928 11 C11orf9 4.64E-01 4.76E-01 7.63E-02 9.59E-08 1.32E-06 3.20E-01 7.87E-01 2.50E-01
rs10744777 12 ALDH2 9.99E-01 8.40E-01 1.46E-02 1.56E-07 2.18E-02 8.90E-01 1.18E-01 6.24E-06
rs11717195 3 ADCY5 2.68E-07 1.20E-01 4.77E-04 3.77E-02 4.52E-01 2.60E-01 1.34E-04 5.05E-01
rs6485702 11 LRP4 4.60E-02 8.54E-02 6.88E-08 4.68E-04 2.40E-07 2.10E-01 4.72E-01 2.99E-01
rs6810027 3 NISCH 4.11E-01 1.06E-02 1.07E-06 1.67E-02 3.09E-02 1.20E-07 8.68E-02 2.37E-01
rs9394279 6 intergenic 5.02E-01 2.62E-03 2.92E-05 2.96E-02 6.46E-01 1.60E-01 1.56E-01 2.27E-01

SNP CHR Gene PCLC PCFisher PCMinP WI Wald VC TATES PCAQ PCO

rs355838 2 COBLL1 1.42E-03 1.10E-16 1.23E-08 9.62E-18 1.28E-16 5.14E-11 6.15E-06 <E-15 <E-15
rs8321 6 ZNRD1 3.05E-06 1.25E-09 1.37E-10 1.28E-05 1.50E-10 9.30E-14 2.78E-04 9.44E-14 1.82E-13
rs5754352 22 UBE2L3 3.69E-05 2.04E-09 8.74E-07 4.28E-06 1.54E-09 7.13E-11 2.69E-05 7.13E-11 1.40E-10
rs308971 3 SYN2 1.73E-02 2.32E-06 3.51E-07 2.48E-10 2.32E-07 1.32E-03 7.29E-05 2.48E-10 4.92E-10
rs2269928 11 C11orf9 9.57E-02 5.71E-09 3.71E-05 7.67E-06 4.61E-09 5.07E-10 6.98E-06 5.38E-10 1.03E-09
rs10744777 12 ALDH2 1.11E-02 6.14E-10 1.43E-06 1.90E-07 6.63E-10 7.54E-09 2.24E-05 6.73E-10 1.22E-09
rs11717195 3 ADCY5 1.78E-06 1.18E-09 8.52E-04 1.69E-07 2.18E-09 4.71E-08 8.51E-06 2.18E-09 2.33E-09
rs6485702 11 LRP4 2.15E-01 7.79E-07 8.47E-07 2.07E-09 3.65E-07 5.21E-04 5.01E-06 2.16E-09 5.35E-09
rs6810027 3 NISCH 2.56E-03 1.69E-08 2.34E-05 4.74E-09 1.72E-08 1.70E-06 4.21E-06 4.94E-09 9.58E-09
rs9394279 6 intergenic 1.40E-08 2.36E-06 4.59E-03 1.34E-04 3.18E-06 1.71E-06 4.23E-04 2.48E-06 2.98E-08
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PCLC as one combining component has p-value 2.98 × 10−8.
This demonstrates that PCO which combines PCLC, PCMinP,
PCFisher, WI, Wald, and VC all together is more robust than
any of the individual components, and is also more robust than
PCAQ which only combines three tests: WI, Wald, and VC.
We can also see from Table 6 that whenever any of WI, Wald,
and VC is significant, then the p-value of PCAQ is slightly
more significant than PCO. This is because PCLC, PCMinP, and
PCFisher contribute little or none information in addition to
WI, Wald, and VC when the latter three tests can already capture
the signal, and in this case PCAQ will perform slightly better
than PCO. However, as in case of SNP rs9394279, WI, Wald,
VC and hence PCAQ failed to detect this signal, but PCO was
able to detect it. This is because PCLC can capture this signal.
Those identified new SNPs provide potential candidates for
future functional studies to better understand their biological
roles in the etiology of metabolic syndrome.

8. Discussion

In this article, we proposed a series of principal component-
based testing procedures to detect genetic associations between
an SNP and multiple phenotypes in GWAS studies. These meth-
ods are implemented in our software package MPAT (multiple
phenotype association tests). Contrary to the common notion
and practice of PCA analysis which usually retains the top few
PCs that explain most of the variability in the data for dimension
reduction to be used for testing for genetic effects with multiple
phenotypes, we found that the higher-order PCs can be more
powerful than the top PCs for association analysis. This counter-
intuitive phenomenon can be well explained by the novel geo-
metric concept of principal angle first introduced in this article.
Theoretically, a particular PC is powerful if its principal angle
is zero and powerless if its principal angle is 90◦. Prior to the
introduction of the novel concept principal angle, the power
of PC-based tests for the multivariate normal means depends
on the mean vector (K parameters) and the correlation matrix
(K(K − 1)/2 parameters). With the help of principal angle,
the power of PC-based tests only depends on the K principal
angles, K eigenvalues, and the overall signal strength. Hence, the
complexity of power analysis for PC-based tests reduces from
quadratic to linear order in the number of phenotypes. However,
the principal angles are generally unknown in practical settings.
One cannot choose a particular PC based on estimated principal
angles and then use that cherry-picked PC for inference, because
this approach will incur data snooping bias and the Type I
error rate will be inflated. Actually, the proposed PCMinP test
correctly adjusts for this cherry-picking process and provides a
valid inference.

Effective combination of PCs for multiple phenotype genetic
association testing depends on the K eigenvalues and the K
unknown principal angles. We proposed linear, nonlinear, and
adaptive omnibus combinations of PCs to achieve robust power.
PCLC is an inverse-eigenvalue weighted linear combination of
PCs and can be as powerful as the Oracle test when all the
principal angles are equal to each other, but can lose power
otherwise. In the worst case, PCLC is powerless when the signal
vector is parallel to its rejection boundaries. PCMinP is expected

to perform well when there exists one principal angle equal
to zero, but can lose power when the signal vector lies in the
middle of all the PC directions. The PCFisher test combines all
the mutually independent principal component p-values using
Fisher’s method, which can be more powerful than PCMinP
when the signal vector lies in the middle of all the PCs but can be
less powerful than PCMinP when some principal angle is equal
to zero. We further proposed three quadratic combinations of
PCs: WI, Wald, and VC. Surprisingly, the classical Wald test
and the variance component score test using the linear mixed
model framework (Huang and Lin 2013; Liu and Lin 2018) are
two special cases of weighted quadratic combinations of PCs.
Using convex optimization, we found that the Wald test achieves
its maximal power when the last principal angle is zero and
minimal power when the first principal angle is zero. The VC
test is more powerful than the Wald test when the last principal
angle is zero and can be less powerful otherwise. The WI test is
more powerful than both the Wald and VC tests when the first
principal angle is zero but can be less powerful otherwise. None
of them is robust to the unknown principal angles.

The adaptive quadratic test PCAQ is more robust than the
WI, Wald, and VC tests. As demonstrated by the simulation
studies, PCMinP and PCLC can be more powerful than PCAQ
in some situations. This suggests that an omnibus test that
combines all these six tests together would be even more robust
than PCAQ. The p-values of PCAQ and PCO can both be calcu-
lated analytically by numerical integration. This is advantageous
when analyzing a large number of phenotypes with millions of
SNPs across the whole genome, as the principle angles are likely
to change from one SNP to another and a powerful test for one
SNP might not be powerful for another SNP. All the proposed
testing procedures have been implemented in a publicly avail-
able R package MPAT. The connections and subtle differences
between those PC-based tests were illustrated graphically in
terms of their rejection boundaries. The theoretical conditions
under which each PC-based test can be more powerful than the
traditional Wald test are as follows: the principal angles θk = 0
for PCk, PCMinP and PCO; cos2(θk) = 1/K for PCLC; θ1 = 0
for WI; θK = 0 for VC; θ1 = 0; or θK = 0 for PCAQ.

The eigen-analysis section investigates how the correlation
structures among multiple phenotypes can influence the eigen-
values and eigenvectors of the correlation matrix, and subse-
quently affect the powers of PC-based tests. From eigen-analysis
and simulation studies, we found that the PCO test can outper-
form the MinP and the TATES tests for the detection of sparse
signals, especially when the dimension is high. The classical
Wald test can perform poorly in high-dimension settings as
discovered by our eigen-analysis and demonstrated empirically
by simulation studies, whereas the omnibus test PCO can still
have good power in those settings. The eigen-analysis highlights
the importance of the correlation structures in affecting the
powers of PC-based tests for detecting both sparse and dense
signals. The eigen-analysis also shows that caution is needed for
PC-based multiple phenotype analysis in the presence of highly
correlated phenotypes. In such cases, the covariance matrix of
multiple phenotypes is close to be singular, and the eigenvalues
of the last few PCs are likely to be very small, making some
tests that combine PCs, such as the Wald test, unstable. One
can either remove some of highly correlated phenotypes before
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performing multiple phenotype tests, or remove the last few PCs
with very small eigenvalues before combining PCs to construct
tests. For the former, one can select biologically meaningful
phenotypes for a joint analysis in collaboration with domain
scientists. At the same time, statistical consideration of power
and numerical stability also should be taken into account when
selecting phenotypes into analysis. Further research is needed
on how to truncate PCs using selective inference theory (Choi,
Taylor, and Tibshirani 2014) and then use those truncated PCs
to construct valid and powerful tests by balancing the power and
the numerical stability of the tests.

In this post-GWAS era, there are increasing amounts of
GWAS summary statistics for multiple phenotypes publicly
available on dbGAP (http://www.ncbi.nlm.nih.gov/gap) and
other places. Our methods and software provide a cost-effective
way to analyze such datasets to discover novel biology by bor-
rowing information across multiple phenotypes. We demon-
strated the usefulness of our methods by analyzing multiple
metabolic syndrome-related clinical phenotypes with datasets
collected from four international consortia. This real data exam-
ple illustrates that the PCO test has robust power to detect
additional novel loci underlying metabolic syndrome, outper-
forming the existing TATES method. It is of future research
interest to apply our tests to higher-dimensional practical set-
tings, for instance, in the studies of the genetic basis of gene
expression levels or DNA methylation levels in a biological path-
way/network when such datasets are available. When individual
level data are available for both phenotypes and genotypes in the
future, it would be practically interesting to compare the perfor-
mances of our PC-based tests with other multiple phenotypes
methods as discussed in Galesloot et al. (2014).

PCA is just one-dimension reduction method for trans-
forming the correlated Z-statistics into uncorrelated ones using
spectral-decomposition of the correlation matrix. There exist
other methods for de-correlating correlated Z-statistics, such as
the Cholesky decomposition. It would be interesting to explore
the differences and connections between the testing statistics
obtained from eigen-decomposition and Cholesky decompo-
sition. With the increased availability of phenome-wide data,
there will be a greater demand for analyzing multiple pheno-
types in sequencing studies especially using electronic medi-
cal record data and molecular phenotype data. Since popular
region-based association testing statistics for rare variants are
not normally distributed, for example, the SKAT test statistic
follows a mixture of chi-squared distributions (Lee, Wu, and Lin
2012), our current PC-based tests are not directly applicable for
the detection of associations between rare variants and multiple
phenotypes. More future work is needed to extend the current
PCA framework for joint analysis of multiple phenotypes in
GWAS to multiple phenotype analysis in sequencing association
studies to detect rare variant effects.

Supplementary Materials

The supplementary pdf file contains simulation results and additional real
data analysis results. The supplementary excel file contains the unstruc-
tured correlation matrix of dimension 100×100, and the β vectors of length
100 in simulation settings M11–M15, and the estimated principal angles for
the 10 SNPs in Table 6.
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